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In strongly stratified geophysical fluids such as the stratosphere and the ocean, the
vertical mixing of tracers is largely due to patches of turbulence that are intermittent
in time and space. Heuristic models for this type of mixing are studied which
extend that of Dewan (1981a). The recognition that, in these models, fluid particles
undergo continuous-time random walks allows the derivation of closed-form results
for the particle-position statistics. The particle dispersion is shown generally to be
diffusive in the long-time limit. However, the early-time, non-diffusive regime is also
analysed, since a time-scale estimate indicates its practical importance, in particular
for stratospheric mixing.

Because the restratification of fluid patches previously homogenized by turbulence
takes a finite time, the probability for a fluid region to become turbulent may depend
on the time elapsed since it has last been turbulent. This introduces a ‘memory
effect’ whose consequences for the tracer mixing are analysed in detail using a simple
non-Markovian model.

The heuristic models studied allow the large-scale dispersive effects of the turbulent
patches to be inferred from the properties of individual patches. This highlights those
properties that might most usefully be determined from investigations of the dynamics
of the turbulent patches themselves.

1. Introduction
The fundamental problem of tracer stirring and mixing has a particular impor-

tance in geophysical flows, since it is central to such phenomena as atmospheric
photochemistry and oceanic water-mass modification. Although stirring, i.e. differ-
ential advection by large-scale flows, can efficiently reduce the typical tracer scales,
small-scale mixing is essential since it is responsible for tracer homogenization at a
molecular level. This mixing is ultimately accomplished by molecular diffusion, but
in geophysical flows the effect of molecular diffusion is considerably enhanced by the
presence of three-dimensional turbulence. The density stratification that characterizes
geophysical fluids strongly constrains vertical motions and hence deeply influences
the nature of turbulence and mixing (e.g. Csanady 1973). This influence is particularly
important for the two strongly stratified fluids that motivate the present study – the
stratosphere and the ocean below the mixed layer.

Turbulence in strongly stratified fluids is intrinsically heterogeneous in the vertical:
it is concentrated in thin, pancake-like layers separated by regions of strong density
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gradients (Fernando 1991; Barenblatt 1996; Kimura & Herring 1996, and references
therein). This heterogeneity exists in simple settings in which energy is supplied
more or less uniformly while a large-scale density gradient is maintained; it is
much more pronounced, however, when the energy supply is intermittent. The latter
situation is the relevant one for the stratosphere and the ocean where turbulence
is believed to be generated by localized breaking of internal gravity waves and
localized shear instability. Because of the intermittence of the generation mechanisms,
stratospheric and oceanic turbulence can be regarded as a discontinuous process
in which isolated patches of turbulence appear, and subsequently decay, at various
instants and locations depending on the details of the internal-wave field and large-
scale flow (Barenblatt 1996, and references therein).

Describing the mixing that results from such turbulence is particularly challenging.
Turbulent patches have a complex life cycle, and their mixing properties are not well
understood (Fernando 1991). The turbulence generation mechanisms are also complex
and particularly difficult to model. A description of the mixing due to internal-
gravity-wave breaking, for instance, requires a satisfactory description not only of
the breaking itself, but also of the evolution of the wave field in the environment
of the mixing region. In view of this complexity, it is clear that heuristic approaches
based on phenomenological representations of the turbulence may be best suited to
modelling the mixing in the stratosphere and in the ocean. Such an approach has been
employed by Dewan (1981a): concentrating on the vertical transport, he proposed
a simple one-dimensional model of mixing in strongly stratified fluids and studied
its applicability to the stratosphere (see also Dewan 1980, 1981b). Dewan’s model
assumes that turbulent patches of random thicknesses form at random altitudes; only
the net effect of each mixing event (i.e. the complete life cycle of a turbulent patch)
is considered and is assumed to result in the perfect mixing of tracer within the
patch.† Dewan (1980, 1981a) performed numerical simulations which showed that
his model of turbulence leads to the vertical diffusion of tracer with a well-defined
diffusivity.

It is intuitively clear that in Dewan’s model particles undergo some sort of random
walk in the vertical. One of the purpose of the present paper is to make this
point precise. Specifically, we show that the evolution of the particle position can
be represented by a random process known as a continuous-time random walk
(Montroll & Weiss 1965). In § 2, we describe the general framework provided by
the theory of continuous-time random walks and show how Dewan’s model fits in
that framework (§ 2.1). In fact, various extensions of Dewan’s model may be devised
which remain in the same framework. This is highly advantageous, since the theory of
continuous-time random walks provides closed-form results from which the statistics
characterizing tracer dispersion are derived (§ 2.2). From these results, it is easy to
verify that the probability density function of the particle position evolves according
to the diffusion equation (as is observed in Dewan’s simulations) only for times much
longer than the average time interval between two mixing events experienced by a
given particle.

† Dewan’s model might seem very crude when compared to others that attempt to reproduce
vertical dispersion in stratified fluids by solving simplified equations for the motion of buoyant
particles submitted to random pressure fluctuations (Csanady 1964; Pearson, Puttock & Hunt 1983;
Kimura & Herring 1996). However, models of the latter type are not adapted for the highly
intermittent and localized turbulence we are concerned with; they require a certain homogeneity of
the turbulence and, in the geophysical context, probably apply better to mixing in the troposphere
or in the ocean mixed layer.
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The early-time evolution of tracer distributions depends on the details of the
statistics of the mixing events. In § 3 we investigate this evolution using two simple
models for such statistics. In the first model (§ 3.1), which is Markovian, successive
mixing events experienced by a fluid particle are regarded as independent. In the
second (§ 3.2), which is non-Markovian, memory is introduced which makes short time
intervals between mixing events more likely than long ones. The dependence between
mixing events is motivated by the idea that fluid particles which have experienced
mixing in the recent past are in an environment that is only weakly stratified and
is thus more susceptible to becoming turbulent. Using a simple model with three
parameters, we study in detail the effect of the memory on particle dispersion.

In § 4 we estimate the average time interval between successive mixing events
experienced by a particle in the deep ocean and in the stratosphere. In both the cases,
we find it to be of the order of one day or so. As a result we argue that the non-
diffusive behaviour that characterizes the early-time tracer evolution is important,
particularly for stratospheric mixing. This highlights the practical importance of a
better understanding of the mixing properties of turbulent patches, since some of
these properties are crucial to the early-time behaviour. The properties that are most
relevant may be clearly identified from the continuous-time random walk model which
provides a rigorous framework relating the small-scale turbulent-patch dynamics to
their impact on large-scale tracer distributions. The results described therefore have
important implications for research on stratified fluids, much of which is motivated by
potential applications to atmospheric and oceanic tracer evolution. Such implications
are discussed in § 4.

In this paper, the focus is on one-dimensional modelling and on vertical mixing.
More precisely, we consider vertical dispersion of fluid particles and exclusively
calculate single-particle distributions. This is by itself of real interest in many physical
contexts, but more generally, to consider vertical mixing, e.g. for chemically reacting
flows, it will be necessary to calculate multi-particle statistics. We discuss this in the
concluding section (§ 5).

2. Continuous-time random walks
In Dewan’s model, fluid particles experience a random vertical displacement every

time a mixing event takes place. The vertical position of fluid particles can therefore
be described by a random walk with variable step size. In Dewan’s simulations, the
mixing events occur at regular time intervals, but it is more realistic to consider time
intervals that are also random. In this case, the stochastic process describing the
fluid-particle vertical positions falls into the class of continuous-time random walks
introduced by Montroll & Weiss (1965) (see also Weiss & Rubin 1983; Hughes &
Prager 1983, and references therein).

Continuous-time random walks are entirely defined by an associated probability
density function Φ(l, τ) which governs the probability that a (vertical) displacement of
size l occurs τ time units after the previous displacement – in what follows we refer to
l as the step and to τ as the waiting time. In the context of interest, Φ(l, τ) completely
describes the statistics of the vertical displacement experienced by a given fluid parcel
as a result of intermittent turbulence; it is essentially a Lagrangian quantity which
may not be related in an obvious way to the Eulerian characteristics of the turbulence.
Deriving Φ(l, τ) from Eulerian information is nonetheless possible in principle; for
Dewan’s model, it can be done explicitly as we now show.
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Figure 1. Calculation of p(l|h): (a) the probability for the step to be l when the particle is at a
distance y from the centre of the turbulent slab is distributed uniformly in the shaded area; (b) by
integration of this probability over y, the form of p(l|h) is derived.

2.1. Dewan’s model as a random walk

A slightly generalized version of Dewan’s model is defined as follows: mixing events,
during which a slab of fluid of height h centred at altitude z is entirely homogenized
by a turbulent patch, occur separated by random waiting times τ. The probability
density functions of τ, h and z need to be specified: let these be ψ(τ), φ(h) and q(z).
A uniform distribution is assumed for z in [0, H], where H is the total fluid height,
so that q(z) = 1/H . For this model, it is clear that the vertical displacements are
independent of the waiting times and therefore that Φ(l, τ) factorizes according to

Φ(l, τ) = ψ(τ)p(l). (2.1)

We compute the step probability density p(l) associated with a given φ(h) and denote
it by pφ(l). Neglecting boundary effects, we first note that any given particle has a
probability h/H of being inside the turbulent slab. This implies that

pφ(l) =

∫ ∞
0

[(
1− h

H

)
δ(l) +

h

H
p(l|h)

]
φ(h) dh, (2.2)

where p(l|h) is the step-size probability density given that the particle is inside a
turbulent slab of height h. The form of p(l|h) depends on the nature of the turbulent
mixing. Following Dewan (1981a), we assume that the mixing is perfect, that is, we
assume that the particles are redistributed uniformly inside the turbulent slab. If the
distance between a particle and the centre of the slab is y (with |y| < h/2), the step
size l for a given y is uniformly distributed in [−h/2− y, h/2− y] (see figure 1). Since
y itself is uniformly distributed (as is z), p(l|h) takes the form displayed in figure 1(b),
namely

p(l|h) =
1

h2
×


h+ l, −h 6 l 6 0,

h− l, 0 6 l 6 h,

0, l 6 −h or l > h.

Introducing this result into (2.1)–(2.2) provides the function Φ(l, τ) that defines the
continuous-time random walk completely.

Note that (2.2) implies a non-zero probability of steps with zero displacement, which
we might call ‘null steps’. This arises because we consider mixing events somewhere in
the fluid column, which may not affect a given particle. To avoid this, we can instead
consider only mixing events experienced by a given particle, thereby excluding null
steps. This leads to new expressions for ψ(τ) and p(l) which are derived explicitly in
Appendix A.
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We emphasize that continuous-time random walks provide a general framework
which may be used to analyse a wide class of models of mixing by highly intermittent
turbulence. Dewan’s model, in particular, may easily be extended while remaining in
this framework, for instance by modifying the form of p(l|h) to relax the hypothesis of
perfect mixing. But such models need not be derived from an Eulerian picture, such as
that described in this section. Indeed, we believe that there are advantages to taking a
Lagrangian perspective from the start and defining models directly from Φ(l, τ). Such
a definition might follow from in situ observations or laboratory experiments.

2.2. General results

Continuous-time random walks, although non-Markovian in general, are remarkably
simple processes: using Laplace and Fourier transforms, P (z, t), the probability for
a particle starting initially at z = 0 to be at altitude z at time t, can be derived
in closed form given any Φ(l, τ) (e.g. Hughes & Prager 1983; Shlesinger, Klafter &
Wong 1982). P (z, t) completely describes the one-particle statistics associated with the
mixing; it can be interpreted as the Green’s function describing the vertical spreading
of a passive tracer.

We now review briefly the properties of P (z, t) for arbitrary Φ(l, τ). For simplicity,
we restrict our attention to functions Φ(l, t) that decouple according to (2.1). Defining
the Laplace and Fourier transforms of, respectively, ψ(τ) and p(l) as

ψ̂(u) =

∫ ∞
0

e−uτψ(τ) dτ and p̂(m) =

∫ ∞
−∞

eimlp(l) dl,

the following expression can be derived for the Fourier–Laplace transform of P (z, t):

P̂ (m, u) = Ψ̂ 1(u) +
Ψ̂ (u)ψ̂1(u)p̂(m)

1− ψ̂(u)p̂(m)
, (2.3)

where Ψ̂ (u) is the Fourier transform of the waiting-time distribution function Ψ (τ)
defined by

Ψ (τ) :=

∫ ∞
τ

ψ(τ′) dτ′

(e.g. Weiss & Rubin 1983). The functions ψ1(τ) and Ψ1(τ) whose Fourier transforms
appear in (2.3) describe the statistics of the time elapsed between the origin of time,
associated with the first observation, and the first mixing event. These statistics are
different from those of the waiting times between successive mixing events (described
by ψ(τ) and Ψ (τ)) because an event does not necessarily occur at t = 0. Regarding
the origin of time as a random time with no correlation with the times at which
turbulent events occur, it may be shown that

ψ1(τ) =
1

τm

Ψ (τ) and Ψ1(τ) =
1

τm

∫ ∞
τ

Ψ (τ′) dτ′, (2.4)

where

τm :=

∫ ∞
0

τψ(τ) dτ =

∫ ∞
0

Ψ (τ) dτ (2.5)

is the average waiting time.
Equation (2.3) gives the closed form of P (z, t); it can also be employed to obtain

the evolution of the moments 〈z2n〉 of the vertical position (n is an integer and 〈·〉
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denotes ensemble average). The Laplace transform of these moments is given by

L〈z2n〉(u) = (−1)n
∂2n

∂m2n

∣∣∣∣
m=0

P̂ (m, u). (2.6)

A remarkable conclusion is readily derived from this expression. Suppose that all the
moments of ψ(τ) and p(l) are finite, then ψ̂(u) and p̂(m) can be expanded in Taylor
series according to

ψ̂(u) = 1− τmu+ O(u2), p̂(m) = 1− σ2

2
m2 + O(m4), (2.7)

where

σ2 :=

∫ ∞
−∞
l2p(l) dl

is the step variance and we assume that the step distribution is symmetric. The
evolution of the moments 〈z2n〉 for large time is governed by the limit of (2.6) as
u → 0. It can be verified that the terms neglected in (2.7) do not contribute to
L〈z2n〉(u) in this limit, i.e.

lim
u→0
L〈z2n〉(u) = lim

u→0
(−1)n

∂2n

∂m2n

∣∣∣∣
m=0

P̂d(m, u)

where

P̂d(m, u) :=
1

u+ κm2
, with κ :=

σ2

2τm
. (2.8)

Now, P̂d(m, u) can be recognised as the Fourier–Laplace transform of the Gaussian

Pd(z, t) =
1√

4πκt
exp

(
− z2

4κt

)
, (2.9)

the Green’s function associated with the diffusion equation with diffusivity κ. We
therefore conclude that the vertical mixing processes modelled by continuous-time
random walks are diffusive in the long-time limit, unless Φ(l, τ) possesses infinite
moments (cf. Hughes & Prager 1983, and references therein).

This conclusion – essentially a central-limit theorem – provides rigorous support
for the numerical simulations of Dewan (1981a) which revealed a diffusive behaviour
for the mixing. (In fact, we can give an exact expression for the diffusion coefficient
in Dewan’s 1981a model, correcting his Eq. (2); this is done in Appendix B.) The
conclusion also gives precise conditions for the diffusive behaviour: it is only when
ψ(τ) or p(l) have infinite moments (or if τm or σ2 vanish) that the form of the
distribution P (z, t) for long time can be significantly different from the Gaussian
(2.9).

Infinite moments, which lead to Levy distributions and anomalous diffusion (e.g.
Shlesinger et al. 1982), seem unlikely in the case we consider of vertical displacements
induced by turbulent patches. This is clear for the displacement variance which is
naturally bounded because of the stratification and of the finiteness of the energy
supplied. It is less clear for the average waiting time, but it will be admitted as an
hypothesis that may need re-examination. However, even with finite moments, it is
important to recognise that the diffusive behaviour is obtained in the long-time limit
only. This limit is valid for times long compared to a suitable time scale, which is
provided by the average waiting time τm (although higher-order moments of ψ(τ)
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are also relevant if they differ significantly from τm). For shorter time scales, the
moments 〈z2n〉 differ from those obtained for a diffusive process, and the mixing is
not represented accurately by the diffusion equation. Interestingly the second-order
moment evolves as predicted by the diffusion equation for all time. Indeed, (2.3)–(2.6)
give

∂2

∂m2

∣∣∣∣
m=0

P̂ (m, u) =
σ2

τmu2

and, after Laplace inversion,

〈z2〉 =
σ2

τm

t (2.10)

exactly.† It is easy to confirm that this is exceptional, and that higher-order moments
behave diffusively only asymptotically for t � τm. In particular, the fourth-order
moment is found to satisfy

L〈z4〉 =
∂4

∂m4

∣∣∣∣
m=0

P̂ (m, u) =
1

τm

(
6σ4ψ̂(u)

u3Ψ̂ (u)
+
µ4

u2

)
, (2.11)

where µ4 is the fourth-order moment of the step distribution p(l). This clearly differs
from the expression 6σ4/(τ2

mu
3) found for diffusion (an expression which is of course

recovered in the limit of small u corresponding to large t).
A striking difference between continuous-time random walk and diffusion on short

time scales is the fact that, unlike Pd(z, t), P (z, t) is not a smooth function of z for
t > 0. Indeed, it follows from the Fourier inversion formula applied to P̂ (m, u), that
P (z, t) has a contribution proportional to δ(z) with amplitude T (t) given by

T (t) =L−1[ lim
m→∞ P̂ (m, u)],

where L−1 denotes the inverse Laplace transform. When p(l) is smooth,
limm→∞ p̂(m) = 0, and (2.3) indicates that limm→∞ P̂ (m, u) = Ψ̂ 1(u), yielding

T (t) = Ψ1(t). (2.12)

The contribution to P (z, t) proportional to δ(z) is associated with particles that are
deterministically trapped at the initial position. Physically, the trapping results from
the finiteness of the waiting time between mixing events which guarantees that, at
any time, a (decreasing) number of particles have not been affected by the mixing
events. This implies, for example, that tracer concentrations in certain locations will
remain at their initial value for finite times.

The average waiting time τm provides an estimate of the time scale required for
diffusion to be a valid approximation to the more complex process of mixing by
turbulent patches. In geophysical fluids, this time should be compared with other
dynamically relevant time scales in order to assess the importance of the short-time,
non-diffusive behaviour. Order-of-magnitude estimates detailed in § 4.1 suggest that
in the stratosphere, and to a lesser extent in the deep ocean, the relevant time scales
are not much larger than τm. This makes the short-time, non-diffusive regime of the
vertical dispersion by turbulent patches highly relevant to geophysical mixing. This
regime is unfortunately non-universal, with the behaviour of P (z, t) and 〈z2n〉, n 6= 1,

† This does not hold when no difference is made between the statistics of the first step and of the
subsequent ones, i.e. when the origin of time is assumed to coincide with a turbulent event, except
in the Markovian case.
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depending on the details of ψ(τ) and p(l). In the next section we employ very simple
models for these probability density functions to gain insight into the short-time
regime, comparing the form of P (z, t) in particular cases with Pd(z, t) given in (2.9).

3. Short-time behaviour
A natural choice for the waiting-time distribution is that of a Poisson distribution

ψ(τ) = αe−ατ, (3.1)

where α is a fixed parameter. This distribution appears provided that the successive
turbulent events experienced by a given particle are independent. We argue below
that a certain dependence between turbulent events is likely to exist because of the
physical mechanisms leading to the formation of turbulent patches and we propose
a simple parameterization of this effect. However we start by considering the Poisson
distribution (3.1) as a reference case.

3.1. Randomized random walks

With a Poisson distribution for the waiting times, the continuous-time random walk
becomes a Markovian process known as randomized random walk (e.g. Hughes &
Prager 1983). The parameter α in (3.1) determines the time scale of the process and is
the inverse of the average waiting time, τm = α−1. An important aspect of randomized
random walks concerns the statistics of the first turbulent event which are the same
as the statistics of subsequent events. This is easily established by introducing the
Laplace transform ψ̂(u) = α/(u + α) of (3.1) into the transform of (2.4), yielding
ψ̂1(u) = ψ̂(u).

The probability density function P (z, t) is easily calculated from (3.1) and (2.3); it
takes the form

P (z, t) =
1

2π

∫ ∞
−∞

exp {−imz − αt[1− p̂(m)]} dm, (3.2)

once the Laplace inversion is performed. Clearly, this expression is different from
Pd(z, t), unless p̂(m) = 1− σ2m2/2 (which corresponds to a non-smooth p(l)).

As an illustration, let us consider a Gaussian distribution for the steps, namely

p(l) =
1√

2πσ2
exp

(
− l2

2σ2

)
→ p̂(m) = exp

(
−σ

2m2

2

)
. (3.3)

Equation (3.2) then becomes

P (z, t) =
1

2π

∫ ∞
−∞

exp [−imz − αt(1− e−σ
2m2/2)] dm.

Isolating the contribution proportional to δ(z), we find

P (z, t) = δ(z)e−αt +
e−αt

π

∫ ∞
0

cos (zm)[exp (e−σ
2m2/2αt)− 1] dm. (3.4)

In particular, the fraction of particles trapped at the origin is given by T (t) =
exp (−αt), in agreement with (2.12), (3.1) and (2.4).

To confirm the formula (3.4), we have carried out numerical simulations of the
randomized random walk for 60 000 realisations and for t up to 20α−1. We have
computed the evolution of the variance 〈z2〉 as well as approximations to P (z, t)
at regular time intervals. To estimate T (t), we have simply counted the number of
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Figure 2. Evolution of T , the fraction of particles trapped at the origin. The result of a numerical
simulation (symbols) is compared with the theoretical prediction exp (−αt) (solid line).
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Figure 3. Probability density function P (z, t) for the randomized random walk with Gaussian step
distribution: the theoretical formula (3.4) (solid lines) is compared with the results of a numerical
simulation (symbols) and with the Gaussian (2.9) (dashed lines) for αt = 2, 4, 10 and 20. z is
normalized by the standard deviation σ.

particles that are in a narrow interval around z = 0 and normalized this number
by the number of realisations. The corresponding result is displayed in figure 2
which shows that the expected exponential behaviour is recovered accurately. Figure
3 compares the smooth part of P (z, t) given by (3.4) with the results of the numerical
simulation and with the density Pd(z, t) corresponding to a diffusive process with the
same variance and average waiting time. As expected, P (z, t) and Pd(z, t) become
identical for large time, but they are significantly different – in particular near the
origin – at earlier times. Note that we have verified that the variance derived from
the simulation (not shown) increases linearly with time for all time as predicted by
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(2.10). We have also confirmed the analytic result for 〈z4〉 derived from (2.11), (3.1)
and (3.3); this result is conveniently written in terms of the flatness (or excess), which
vanishes for a diffusion process but is here found to be

〈z4〉
〈z2〉2 − 3 =

3τm

t
> 0. (3.5)

The extension of the Dewan model discussed in § 2.1 can be considered using the
Poisson distribution (3.1) for the waiting times. The corresponding probability density
function of z is given by (3.2), with p̂(m) replaced by the Fourier transform of (2.2),
explicitly given by

p̂φ(m) = 1− h

H
+

2

H

∫ ∞
0

1− cos (mh)

hm2
φ(h) dh, (3.6)

where h is the average height of the turbulent layers. The resulting expression, as
expected, also implies a contribution proportional to δ(z) in P (z, t) with amplitude
T (t) = exp (−αht/H).

3.2. Memory effect

As already mentioned, a Poisson distribution for ψ(τ) is obtained under the assump-
tion that the mixing events are independent. However, it is likely that geophysical
mixing events are not independent for two reasons: (i) previous mixing reduces strat-
ification, hence the Richardson number for a given shear; and (ii) the sharp density
gradients which are formed at the boundary of mixed regions lead to strong shear and
low Richardson numbers when tilted by the large-scale flow (Thorpe 1973; Bühler,
McIntyre & Scinocca 1999). Since low Richardson numbers are associated with flow
destabilization by shear instability, both processes lead to a certain memory effect:
turbulent patches are more likely to form in regions which have been affected by
turbulence in the recent past. In Lagrangian terms, this means that the probability
for a particle to experience a new mixing event decreases with the time elapsed since
the last event.

To investigate this effect, let us construct a simple model that introduces some
memory in the probability of mixing events. Consider a random point process such
that the probability of an event in a time interval dτ is [α+ β exp (−γτ)]dτ, where τ is
the time since the previous event and α, β, γ are positive constants. It is easy to verify
that the probability Ψ (τ) for the waiting time to be larger than τ is

Ψ (τ) = exp

[
−ατ− β

γ
(1− e−γτ)

]
, (3.7)

from which the probability density function ψ(τ) is derived according to

ψ(τ) = −dΨ

dτ
. (3.8)

For both short and long time, this density is well approximated by an exponential,
but with a rate changing from α + β for γτ � 1 to α for γτ � 1, with γ controlling
the time scale of the transition between these two rates. Physically, we can interpret α
as the probability per unit time that a mixing event occurs when the fluid is stratified,
α+ β as the probability per unit time that a mixing event occurs when the fluid has
been homogenized by prior turbulence, and γ as the inverse of the time required for
the restratification of turbulent patches.

The long-time behaviour of the process is characterized by the average waiting
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Figure 4. Non-dimensional average waiting time ατm as a function of β/α and γ/α for the process
with memory defined by (3.7)–(3.8).

1

0.1

0.01
0 1 2 3

w

τ

Figure 5. Probability density function ψ(τ) for the process with memory (3.7)–(3.8) with
β/α = γ/α = 1 (solid line) compared with the probability density function for a Poisson pro-
cess with the same average waiting time (dashed line). The symbols result from a direct numerical
simulation of the process with memory.

time τm, which is conveniently derived from (3.7) by integration with respect to τ.
Figure 4 displays ατm as a function of γ/α and β/α (these non-dimensional variables
appear when α−1 is chosen as reference time). It may be verified that τm is in the range
[(α+β)−1, α−1], tending to the lower (upper) bound as γ tends to 0 (∞). Once the value
of τm corresponding to given α, β, γ is calculated, one can compare the probability
density function (3.8) defining the process with memory with the exponential obtained
for a (memoryless) Poisson process with the same τm. This is done in figure 5 in the
case β/α = γ/α = 1 for which the average waiting time is given by ατm = 0.633. As
anticipated, the effect of the memory is to introduce two different decay rates for short
and long time (corresponding to two different slopes in the linear-log coordinates of
figure 5); τ−1

m can be regarded as the properly averaged decay rate.
The memory effect that exists when β 6= 0 and γ < ∞ makes our model non-

Markovian. As a consequence, the statistics of the first waiting time differ from those
of the subsequent waiting times: ψ1(τ) 6= ψ(τ). To characterize this difference, we can
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Figure 6. Non-dimensional parameter η defined by (3.9) as a function of β/α and γ/α.

compare the average of the first waiting time, τ1m say, with the average waiting time
τm and define

η :=
τ1m − τm

τm

=

∫ ∞
0

τψ1(τ) dτ− τm

τm

=

∫ ∞
0

τΨ (τ) dτ

τ2
m

− 1, (3.9)

where the third equality follows from (2.4).
Other consequences of the memory effect are also characterized by η. The memory

effect modifies the fraction of particles trapped at the origin T (t). This can be
quantified by comparing the average time spent by particles at the origin for the non-
Markovian model with that obtained for a memoryless process with the same average
waiting time. From (2.12), the first average time is found to be

∫ ∞
0
Ψ1(τ) dτ = τ1m,

whereas the second is simply τm. It is thus seen from (3.9) that η precisely measures
the relative difference between these two average times. This gives a second sense
in which η characterizes the effect of the memory. A third sense appears when one
considers the flatness. Substituting the expansion Ψ̂ (u) = τm[1 + (η + 1)u] + O(u2),
which is derived from (2.5) and (3.9), into (2.11), and assuming a Gaussian distribution
for the steps leads to the following asymptotic expression for the flatness:

〈z4〉
〈z2〉2 − 3 =

3(1 + 2η)τm

t
+ O(t−2). (3.10)

Comparison with the expression (3.5) derived for the Poisson process indicates that η
measures the leading-order change to the flatness that results from the memory effect.

In view of its multiple interpretations, it is worthwhile investigating the behaviour
of η for the process defined by (3.7). It can be shown analytically that η > 0 in general,
with η = 0 only when β = 0, i.e. when the process is Markovian. Therefore, τ1m > τm;
this implies that the memory effect increases (i) the first waiting time compared with
the subsequent ones; (ii) the number of particles that are trapped at the origin; and
(iii) the flatness of the particle-position probability density function P (z, t). Figure 6,
showing η as a function of β/α and γ/α, gives an idea of the region of parameter
space where the memory effect plays a significant role. This region corresponds to
large β/α and γ/α, and we argue in § 5 that it is likely to be the relevant one in the
context of stratospheric mixing. Asymptotic calculations for large β and γ detailed
in Appendix C show that the maximum value for η is attained when β and γ obey
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Figure 7. Evolution of T , the fraction of particles trapped at the origin. Results from a numerical
simulation (symbols) are compared with the theoretical prediction Ψ1(t) (solid line) and with the
corresponding density for a Poisson process (dotted line).

the relation γ ln (β/α) ≈ β and is given by η ≈ β/(4α). Although these expressions are
quite inaccurate for moderate values of β (the error scales like 1/ ln (β/α) and thus
decreases slowly as β increases), they may prove useful to assess roughly whether the
memory effect is significant for given values of α, β and γ.

We have carried out a numerical simulation of the process with memory so as to
confirm the theoretical results. A Gaussian distribution (3.3) has been taken for the
step size, and the origin of time has been fixed randomly. The parameters β/α = 20
and γ/α = 10 have been chosen. With this choice, the average waiting time is given
by ατm = 0.182, while η = 3.19; 60 000 realisations were employed to obtain a smooth
approximation to the probability density function P (z, t).

Figure 7 shows the non-smooth contribution to P (z, t), i.e. the fraction of particles
trapped at the origin (in practice in a small neighbourhood of the origin), as a function
of time, compared with the theoretical prediction Ψ1(t). It also shows the function
exp (−t/τm) which gives the fraction of trapped particles for a Poisson process with
average waiting time τm and thus it illustrates the increase in the number of trapped
particles that results from the memory effect. In particular, it is seen from the definition
of η (3.9) that the average time spent by particles at z = 0 is τ1m = (1+η)τm = 4.19τm.

The smooth part of P (z, t) obtained from the numerical simulation is displayed in
figure 8. It is compared with the probability density function (3.4) that we derived
in § 2 taking a Poisson distribution for the waiting times. To make the comparison
meaningful, the substitution α → α/0.182 has been introduced in the probability
density function (3.1) defining the Poisson process, so that the two processes under
consideration have the same average waiting time. The figure clearly demonstrates
the dramatic impact that the memory has on the spreading of particles: whilst the
number of particles deterministically trapped at the origin increases because of the
memory effect, the amplitude of the smooth part of P (z, t) near the origin decreases
significantly; at the same time the probability for long displacements (z � σ) is
somewhat larger, consistently with the fact that the variance 〈z2〉 is unchanged by the
memory effect. (It has been verified that 〈z2〉 evolves linearly according to (2.10) and
that the flatness evolves according to (3.10).) The qualitative differences between the
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Figure 8. Probability density function P (z, t) for the process with memory, assuming a Gaussian step
distribution: the results of a numerical simulation (symbols) are compared with the theoretical result
(3.4) obtained for a (memoryless) Poisson process with the same average waiting time τm = 0.182α−1

(solid line) for αt = 0.4, 0.8, 2 and 4. z is normalized by the standard deviation σ.

distributions obtained with and without memory can be understood by noting that
the memory effect increases the probability of long displacements (due to series of
steps separated by short waiting times) as well as the probability of zero displacement.
Of course, in the long-time limit, the two distributions become identical as both tend
to a Gaussian shape (cf. figure 3).

4. Implications
The continuous-time random-walk theory employed above is fruitful in relating the

mixing at small scale, which is associated with single turbulent events, to its impact on
the large-scale dispersion of tracers, which results from the superposition of a large
number of such events. In particular, it suggests that the information essential to
describe tracer dispersion is encapsulated in the two probability density functions p(l)
and ψ(τ). At present, little is known about these functions, either in the stratosphere
or in the deep ocean, and one has to rely on heuristic models such as Dewan’s perfect-
mixing model. These are sufficient to illustrate some implications of the random-walk
results and study the sensitivity of dispersion to such phenomena as the memory effect;
but, clearly, accurate estimates for p(l) and ψ(τ) are needed to model vertical mixing in
the stratosphere or the ocean realistically. In this section, we suggest how information
about p(l) and ψ(τ) could be obtained either from geophysical observations or from
laboratory or numerical experiments. We start by estimating the average waiting time
τm using (2.8) and recent estimates for the oceanic and stratospheric diffusivity. As
already mentioned, τm has a crucial importance in practice, since it allows one to
assess the time scale after which the diffusive approximation applies.

4.1. Stratospheric and oceanic τm

For the oceans, the order of magnitude of the vertical diffusivity κ has been estimated
using various methods which have provided values in the range 10−4–10−5 m2 s−1
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(Ledwell, Watson & Law 1993; Toole, Polzin & Schmitt 1994; Polzin et al. 1997,
and references therein), while the height of typical turbulent layers suggest that the
vertical displacements are of the order of a few metres (Gibson 1986; Polzin 1996).
Taking σ2 = 10 m2 gives an average waiting time τm in the range 5 × 104–5 × 105 s,
i.e. 0.6–6 days. The diffusive behaviour, which requires t� τm, therefore emerges for
time scales longer than a week or so. This is quite short compared to the typical
time scales relevant to large-scale ocean dynamics as given, e.g., by the inverse of a
typical strain rate (which is estimated to be of the order of 40 days by Ledwell et al.
1993). So, we may expect diffusion to model oceanic mixing satisfactorily in many
circumstances. However, important oceanic phenomena involve much shorter time
scales (e.g. tides, biological activity); when these interact with small-scale mixing, the
non-diffusive nature of the mixing can become critical.

For the stratosphere, the vertical diffusivity has recently been estimated as about
10−2 m2 s−1 (Balluch & Haynes 1997; Waugh et al. 1997). If, following Dewan (1980),
we take typical vertical displacements of the order of 30 m, i.e. σ2 ≈ 103 m2, we find
that the average waiting time τm is about 1 day. Thus, in contrast to the oceanic
situation, the time scale of a week or so that might be required for the diffusive
behaviour to appear in the stratosphere is not short compared to other relevant
time scales. For instance, dynamical time scales are provided by the inverse of the
average strain rate, which has been estimated to be of the order of three days in
the lower stratosphere (Haynes & Anglade 1997), and by the Lagrangian correlation
time of the strain, estimated as one day or so (Ngan & Shepherd 1999). Similarly,
photochemical time scales of stratospheric chemical species are frequently shorter
than a week (Brasseur & Solomon 1986). This makes the short-time, non-diffusive
regime of the vertical dispersion by turbulent patches potentially highly relevant to
stratospheric mixing.

4.2. Estimation of ψ(τ) and p(l)

The waiting-time probability density function ψ(τ) which describes the (Lagrangian)
frequency of turbulent events does not solely depend on the dynamics of turbulent
patches. Indeed, it is also related to the spatio-temporal distribution of the forcing
(gravity-wave activity in particular) which causes these turbulent events and to the
manner in which this distribution is sampled by Lagrangian trajectories. Thus ψ(τ)
integrates a variety of phenomena, many of which depend crucially on the specific
geophysical situation. We can therefore argue that ψ(τ) would be best estimated
by direct, preferably Lagrangian, geophysical observations. In the stratosphere, for
instance, instruments detecting turbulence carried by long-duration balloons could
provide data to approximate ψ(τ). Such an approach would allow direct estimation
of τm and assessment of the importance of the memory effect. More sophisticated
instruments could also provide information on the structure of turbulence within the
patches.

In contrast to ψ(τ), the step probability density function p(l) can be essentially
regarded as a characteristic of turbulent patch dynamics. If it is the large-scale
effects that are of interest, we suggest that extraction of information on p(l) should
be a priority for laboratory and numerical experiments on turbulent patches. It is
clear that p(l) describes the net irreversible effect of turbulent events on particle
displacements. This suggests that the transient behaviour of the turbulent patches can
be disregarded. In particular, direct knowledge of the patch lifetime is not necessary
(assuming a certain separation between this time and τm), although it is an essential
factor in the dynamical determination of both p(l) and ψ(τ).
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One may also hope that p(l) depends on only a few parameters characterizing
irreversible mixing – the difference between the potential energy of the stratification
before and after the mixing, or perhaps more precisely the difference in the background
potential energy (i.e. the potential energy of the stable density profile obtained by
adiabatic rearrangement of fluid particles, Winters et al. 1995), is one such parameter.
A challenge would then be to relate these parameters to quantities characterizing
the large-scale flow such as the Richardson number or the gravity-wave activity. In
a similar spirit, laboratory or numerical experiments could prove useful to establish
relationships between p(l) for a single patch on the one hand, and gross measures
of the intensity of turbulence in this patch on the other hand. Information of this
type would make it possible to estimate p(l) using low-cost instruments carried on
balloons or floats; this is important since a large number of instrumented balloons
or floats would be necessary if reliable statistics for p(l) were to be obtained.

When estimating the mixing properties of turbulent patches from observations, it
is common to compute a diffusivity based on measured energy dissipation rates and
large-scale stratification. This suggests a simple extension to Dewan’s perfect mixing
model in which p(l) is derived by solving the diffusion equation inside the patch for
a finite time, possibly with a time-dependent diffusivity. Although diffusion is at best
a crude model for the instantaneous mixing taking place inside turbulent patches, it
is plausible that it provides a satisfactory model when only p(l) is required. Whether
this is the case could be tested in direct numerical simulations.

There are a number of other important issues relevant to the models discussed
earlier that could be examined using numerical or laboratory experiments, provided
that these concerned not isolated patches but an ensemble of patches, thus allowing
analysis of both the spatial and temporal aspects of the mixing in idealized situations.
In particular, the importance of the memory effect studied in § 3.2 and the validity of
the hypothesis of decoupled probability density function (2.1) could be assessed.

5. Discussion
In this paper, we have studied heuristic models of vertical mixing by intermittent

turbulence using a framework provided by the theory of continuous-time random
walks. As we have emphasized, a variety of models can be devised within this
framework, and so a variety of specific physical effects may be accounted for – the
memory effect is just one of these. The advantage of continuous-time random walks
is their inherent simplicity, which leads to a closed-form expression for the probability
density function of the particle position P (z, t). However, if one wishes to regard P (z, t)
as the mean concentration of a tracer in a geophysical fluid, it can be argued that
this closed-form expression is not particularly useful: since the tracer concentration
is governed, not only by vertical mixing, but also by other phenomena (advection
and chemical reactions in particular), what is needed is an evolution equation for
P (z, t) in which these phenomena can be included. As noted in § 1, P (z, t) is generally
not sufficient to describe chemical reactions, which depend on two-particle or more
probability density functions, but in principle advection can be treated using P (z, t)
only. In general this is fairly delicate (see Compte 1997 for an ad hoc treatment); we
therefore leave the study of the interaction between advection and mixing for future
work.

Our approach in this paper is to use probabilistic models to relate the properties
of single patches to their effect on large scales. Here, the precise effect studied is
dispersion rather than genuine mixing. In the context of random walks, genuine
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Figure 9. Non-dimensional parameter τmγ as a function of β/α and γ/α. A rough estimate
suggests that τmγ for the stratosphere could be in the range [1, 5].

mixing would be implied by statistical independence of the walk undergone by each
particle. Inside each patch this independence is likely to be a useful approximation,
since the flow is three-dimensionally turbulent. However the independence will not
hold when the effect of an ensemble of patches is considered. This is why our single-
particle results can be taken, strictly speaking, only to describe dispersion, not genuine
mixing. Nonetheless, it is clear that the overall approach used in this paper can be
extended to quantify genuine mixing effects.

Returning to more specific issues raised by the models in this paper, the memory
effect, discussed in § 3.2, associated with the finite time for complete restratification of
turbulent patches can have an impact on tracer dispersion. Our simple three-parameter
model allows us to assess the conditions under which this impact is most significant.
In view of the importance of the transient, non-diffusive regime for mixing in the
stratosphere, it would be useful to estimate ‘stratospheric’ values of the parameters
α, β and γ. It is not an easy task, however. A first piece of information is provided
by the estimate for τm given in § 4.1; a second may be derived by interpreting γ−1

as the typical time taken by turbulent patches to restratify. Arguments based on
gravity-wave propagation indicate that, at mid-latitudes, this time might be of the
order of several hours (O. Bühler, personal communication; see also Bühler et al.
1999). Taking τm of the order of a few days then suggests that realistic values of τmγ
are in the range 1 to 5. A last piece of information is necessary to determine α, β and
γ completely. In principle, this could be provided by the ratio β/α, which measures
the relative increase in the mixing-event probability that appears when the fluid is
homogenized by prior turbulence; unfortunately we do not have simple means of
evaluating this ratio.

However, irrespective of the precise value of β/α, an interesting conclusion can
be drawn from figure 9 which displays τmγ as a function of β/α and γ/α. When
compared to figure 6, this figure indicates that η is greater than one, i.e. that the
enhancement of dispersion due to memory is significant, when τmγ is in the realistic
range, provided that β/α is not too small. The same conclusion may also be reached
using the asymptotic expressions for τm and η developed in Appendix C.

We conclude this paper with two remarks that emphasize the importance of
realistic representations of the small-scale mixing for the modelling of large-scale
tracer distributions. First, when the tracer stirring is dominated by the large-scale
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flow, as is thought to be the case in the stratosphere, the time necessary for tracer
scales to cascade down to the mixing scale remains dependent on the strength of
the mixing as this strength becomes vanishingly small (e.g. Pierrehumbert 1995). As
a consequence, it is important to represent the small-scale mixing accurately even
if it is weak. Second, recent work on stratospheric tracer spectra using diffusion to
parameterize the mixing indicates that horizontal scales as large as few hundred
kilometres are affected by diffusion when a realistic value is taken for the diffusivity
(Vanneste & Haynes 2000). The same conclusion can be expected to hold when the
small-scale mixing is represented by more sophisticated models such as that considered
in this paper.
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anonymous referee for a number of constructive comments. The work of the Centre
for Atmospheric Science is supported by the UK Natural Environmental Research
Council through the UK Universities Global Atmospheric Modelling Programme and
by the Isaac Newton Trust. J.V. was funded by the European Commission through
grant FMBICT972004.

Appendix A. Two interpretations of Dewan’s model
It is possible to express Dewan’s model in terms of continuous-time random

walks in two different ways. In § 2, we have taken the waiting-time probability density
function, in essence a Lagrangian quantity, as equal to the probability density function
ψ(τ) for the time between successive turbulent events in the fluid column, an Eulerian
quantity. By doing so, we include in the description null events that do not affect
a chosen particle (because it is outside the turbulent patch); this results in a term
proportional to δ(l) in the displacement probability density function (2.2).

An alternative interpretation is obtained by considering only events that do affect
a chosen particle. The corresponding waiting-time probability density function, ψ?(τ)
say, is then related to ψ(τ). To derive this relationship, we use the associated probability
distribution functions Ψ?(τ) and Ψ (τ). Ψ?(τ) is the probability that the chosen particle
encounters no turbulent patch in the time interval [0, τ]. If n turbulent events occur
in [0, τ], this is achieved provided that the particle lies outside each of the n patches.
(Correspondingly, Ψ (τ) is the probability that there are no turbulent events in the
fluid column.) Since the average probability for the particle to be outside a patch is
(1− h/H), we find by summing over the number n of turbulent events that

Ψ?(τ) = Ψ (τ) +

(
1− h

H

)∫ τ

0

Ψ (τ− τ′)ψ(τ′) dτ′

+

(
1− h

H

)2 ∫ τ

0

∫ τ′

0

Ψ (τ− τ′)ψ(τ′ − τ′′)ψ(τ′′) dτ′dτ′′ + · · · .

(Note that the above expression assumes that a turbulent event occurs at τ = 0 as is
required to compute the waiting-time between steps other than the first one.) Using
the Laplace transform, we obtain, after summing the resulting series, the compact
expression

Ψ̂?(u) =
Ψ̂ (u)

1− (1− h/H)ψ̂(u)
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from which the expression

ψ̂?(u) =
hψ̂(u)

H[1− (1− h/H)ψ̂(u)]

for the Laplace-transformed probability density function follows easily. The forms
of the first-step statistics ψ?1(τ) and Ψ?

1 (τ) are derived by a similar reasoning, or

alternatively by using ψ?1(τ) = Ψ?(τ)/τ?m, where τ?m = Hτm/h is the average waiting
time for a given particle (or, equivalently, at a given altitude).

The displacement probability density function associated with ψ?(τ) is then

p?φ(l) =

∫ H

0

h

h
p(l|h)φ(h) dh.

It has no contribution proportional to δ(l) since it assumes that the particle is inside
a turbulent patch.

It is somewhat surprising that the two interpretations do not lead to the same
joint distribution: ψ(τ)pφ(l) 6= ψ?(τ)p?φ(l). However, it can be checked using formula
(2.3) that both interpretations lead to the same particle-dispersion statistics P (z, t).
This demonstrates the consistency of the two interpretations. Note that the second
interpretation avoids the use of the fluid-column height H .

Appendix B. Exact expression for the diffusivity in Dewan’s model
Using (2.2), the step variance σ2 is readily derived for Dewan’s model. We find

σ2 =
1

6H

∫ ∞
0

h3φ(h) dh =:
h3

6H

which involves the third-order moment of the turbulent layer height. (This may also
be derived by considering the O(m2) term in (3.6).) Introducing this result in (2.8)
provides the exact expression for the diffusivity

κ =
h3

12Hτm

. (B 1)

Noting that Dewan (1981a) uses constant waiting times ∆t leads to τm = ∆t, so that
using our notation, we can rewrite his expression (2) for the diffusivity as

κD =
h h2

8Hτm

, (B 2)

where h and h2 are the first- and second-order moments of turbulent layer height.†
Dewan (1980) obtained an alternative expression for κD with a factor 12 replacing
8 in the denominator using a heuristic derivation based on the flux of a tracer;
however Dewan (1981a) points out that this formula compares less well with the
results of numerical simulations. It is now clear from (B 1) that neither expression for
κD is correct for general height distributions. The fact that (B 2) compares well with
simulations is coincidental and can be explained by Dewan’s choice of φ(h). Indeed,
using his distribution of height we find h = 4.84, h2 = 29.64 and h3 = 222.76 and note
that these values are such that h3/12 = 18.56 ≈ h h2/8 = 17.93.

† For practical use of (B 1), one can follow Dewan (1981a) and use the relationship τmH = τth/F ,
where τt is the typical lifetime of turbulent patches and F is the fraction of the fluid column that is
turbulent at a given time.
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Appendix C. Asymptotic form of η for large β and γ
In this Appendix, we derive a simplified expression for η defined in (3.9) under the

assumption that β/α � 1 and γ/α � 1. For simplicity of notation, we temporarily
non-dimensionalize all variables using α−1 as a time scale – formally this is equivalent
to letting α = 1. The final results will however be stated using the dimensional
variables.

The two parameters β and γ can tend to infinity in various ways, depending on
the ratio β/γ. It turns out that the distinguished limit which captures situations in
which β � γ as well as those in which γ � β and intermediate cases corresponds to
β ∼ γ ln γ. We therefore let

β = s γ ln γ,

where s is a parameter which is assumed to be of order unity. Substituting this
expression for β and changing the integration variable from τ to x := exp (−γτ), we
rewrite the two integrals involved in the definition of η as

τm =

∫ ∞
0

Ψ (τ) dτ =
1

γs+1

∫ 1

0

x1/γ−1 exp (s ln γ x) dx,

and

χ :=

∫ ∞
0

τΨ (τ) dτ = − 1

γs+2

∫ 1

0

x1/γ−1 ln x exp (s ln γ x) dx,

with η = χ/τ2
m − 1. For large γ, the two integrals are dominated by the contribution

of the neighbourhoods of the endpoints. Using Laplace’s method we find at leading
order

τm =
1

γs
+

1

sγ ln γ
+ O[(s2γ ln2 γ)−1],

and

χ =
1

γs
+

1

s2γ2 ln2 γ
+ O[(s3γ2 ln3 γ)−1].

It is clear that either of the two terms in the expression for τm and in that of χ can
be dominant, with the transition corresponding to s = 1 for τm and s = 2 for χ. In
terms of the original dimensional variables, the average waiting time is rewritten as

τm ≈ α−1[exp (−β/γ) + αβ−1],

while η has the form

η ≈ exp (β/γ)

[1 + αβ−1 exp (β/γ)]2
.

For a given (large) β, the maximum value of η is attained when γ ≈ β/ ln (β/α) and
is given by β/(4α).
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